
Tabula Rasa 1

The Tabula Rasa

From a thousand words,
a picture
 by Kurt Cagle

There is something magical about the first
issue of any publication. Every writer knows
this feeling, every artist. The first issue is
the blank page, the empty canvas, the lumps
of unshaped clay awaiting the sculptor’s
hands. That first issue is all potentiality that
has not yet broken its symmetry and come
into existence. It is perfection, and yet, the
moment that the first word gets written down,
the first brush stroke smears its color upon
the pristine pane, that inhuman perfection
crystallizes into a human manifestation of
meaning and intent, skill and talent, with luck
shaping the world far more than that sterile
potential ever could.

When I went to college all too many years
ago, I remember working with a vapor
discharge terminal and an operating system
called Plato that uses an electronic gun to
draw brilliant orange images and letters on
the screen, one stroke at a time. The system
could render photographic images—raster
images—at best poorly, so it instead utilized
the principle of programming to produce its
imagery one instruction at a time:

These shape instructions became known
(somewhat inaccurately) as vectors, and the
pictures so formed were vector graphics. That
you could use mathematical commands, the
very antithesis in many people’s minds to the
creative spirit of the artist, in order to build a
picture may seem counter intuitive, yet it is
precisely this that underlies Postscript, the

to build an open language called Scalable
Vector Graphics, or SVG. As with many
computer names, this involved more than
a few ironic entendres—all vector graphics
can be intrinsically rescaled without loss of
resolution, but the scalable here also referred
to the ability of the SVG system to scale
beyond the bounds of an ordinary graphic.

Suppose, for instance, that I created a
graphic that repeats well in two dimensions.
With SVG, I can actually create a reference to
this graphic as part of a pattern and use that
to fill another graphic—even if the original
graphic existed on a server a thousand miles
away from the image that utilized it. What’s
more, when fully implemented, both graphics
can in turn respond to the actions of the
viewer, can change their aspect even as they
are being viewed. Like HTML, their thousand
words defined not just a simple delineation
of actions, but the existence of a complex
ecosystem of semi-aware shapes and groups
of shapes. The drawing, once drawn, may
continue to change and morph and interact
with the world around it.

Yet ironically, what was fashioned at that
conclave and subsequent ones like it,
is remarkable not for this seemingly magic
quality of the images that the language
makes possible, but the very nature of the
language itself. There are any number of
such vector formats in existence, but all
but one of them are predicated upon the
notion that a given vendor controls the
specification. They can arbitrarily change
the language in order to give them a
competitive advantage or to lock out
competition, and ultimately there is an
uneasy question about whether the
graphics so created with the language
belong to the artist or to the vendor who
supplies the brushes.

moveTo 0,0; drawTo 126,16;
arcTo 17,192...

language employed by both printers and
applications in order to render a page filled
with text and graphics. Vector graphics help
computers to objectify graphics, to turn
a drawing into the distinct operations by a
set of objects. It is much as if the Sorcerer’s
Apprentice had chosen not brooms but
brushes, buckets of paint, pens, and masks to
do his bidding, each engaged in an intricate
dance to do what it was designed to do best.
The artist ceases to be the hand that wields
that brush or pen, but instead becomes
the conductor who instructs the brush
and pen to do what they must.

Five years ago, a sorcerer’s conclave (the
Graphics Working Group of the W3C) met
to discuss these various pens and brushes,
and more importantly, the ownership of the
language of the spells which gave these
homunculi their orders. The meeting was
contentious, because at its heart lay the
fundamental question of ownership—
whether the instructions to build these
graphics should continue to lay within the
province of the tool vendors and hence only
be exposed by their effects, or if, instead, the
language should be an open standard that
anyone could use to produce the tools to
create the graphics. In the end, a few of
the wizards walked out angrily, including
a couple of the mightiest.

The rest, however, took their absence
(perhaps slyly) as assent, and proceeded >> continued on page 8

Plato, a prehistoric
operating system,
uses an electronic
gun to draw brilliant
orange images and
letters on the screen
one stroke at a time.

Tabula Rasa 1

IL
LU

ST
R

A
TI

O
N

 B
Y

 P
ET

ER
 S

C
H

O
N

EF
EL

D

No 1 August 2005

2 August 2005

Creating SVG widgets with
SPARK GUI framework

There have been numerous widgets created
by the authors of SVG based web applications
and a number of attempts to create standard
widget libraries (kevlindev widgets, SVgUI
project, CGUI, dSVG). While each of these
efforts makes a valuable contribution to the
field of SVG GUI, they’ve required a great
deal of duplicated and arguably wasted effort.
One of the major hurdles in the creation of
a standard SVG GUI library identified by
the originators of the SVG Programmers
Application Resource Kit (SPARK) was the
lack of a published reference framework,
which would allow implementors to easily add
new widgets to an existing library, and ensure
interoperability with future widgets.

With this objective in mind, the SPARK
project was initiated, and the SPARK GUI
Framework (SPARK-FW) was developed to aid
in the development of reusable, interoperable,
SVG based widgets.

This article introduces the reader to the
SPARK-FW. It will show what is required to
construct a widget that conforms to the
framework, and how that widget can be
used in a simple web application.

The SPARK home page can be found at:
http://spark.sourceforge.net. The Etch-A-
Sketch application developed for this article
can be found under samples at: http://spark.
sourceforge.net/resources/samples/

Creating a SPARK compliant
widget

A compliant widget consists of two
parts: an SVG Document Fragment and
an ECMAScript Object. When the document
is loaded, the entire document is parsed;
elements that describe the widgets are
passed to the SPARKFactory, which
creates the widget. The FW defines two
primitive types from which all
widgets inherit:

• The atom is a self contained widget
that will not contain other widgets and
may be used as a target for user input.

• The container is a widget that may
contain other SPARK widgets and will
likely not act as a target for user input.

The SPARK framework imposes a few
requirements on the SVG Document
Fragment describing a widget:

• The fragment will be contained
in a top level element whose class
specifies the type of the widget.

• This will be of the form “SPARK
[atom|container] WidgetName
WidgetStyle”.
 • The SPARK keyword indicates
 that this is a SPARK-FW
 compliant element.
 • The second indicates that
 this widget is either an atom
 or a container.
 • The third is the name of
 the widget (i.e. Button,
 Slider, Jog Dial).
 • The fourth optional entry can
 be used to provide different
 widget styles via CSS.

• The SVG must provide a “desc”
element describing the widget

• The SVG may provide a metadata
element containing initialization
parameters for the widget.

• The SVG must include a body that
defines the widgets appearance. This should
be included in a group element with a
meaningful class attribute.

For instance, in this article we will create a
Jog Dial—a widget that allows the repeated
generation of positive or negative (i.e. up/
down, left/right) events that can be used to
control a target. You’ll see a Jog Dial on many
new keyboards and PDA’s, it is also
synonymous with the scroll wheel available
on most mice. Example 1 presents an SVG
Document Fragment that could be used to
describe such a widget in the SPARK-FW.

EXAMPLE 1

Figure 1: Screen
Shot of Jog Dial.
The picture on the
left shows the dial
in the resting state
and the picture on
the right shows the
dial as it is rotating
in the clockwise
direction. A text element has been added to the SVG
document which displays a value that is incremented
as the dial rotates to the right and decremented as the
dial rotates to the left. This text element is for illustration
purposes only and is not actually present in the final
widget; in the illustration the text element displays the
cumulative total of events fired.

Value -2 Value 7

<g id=”jog-1” class=”SPARK atom JogDial”
 transform=”translate(50,50)”>
 <desc>Jog dial widget</desc>
 <metadata eventfreq=”250”></metadata>
 <g class=”SPARK JogDial base”>
 <circle r=”40.0” style=”fill:#009999” cx=”0.0” cy=”0.0”/>
 <g>
 <circle r=”30.0” style=”fill:#99ff66;”
 cx=”0.0” cy=”0.0” />
 <path style=”stroke:#009999;fill:#99ff66;”
 d=”M -20 -40 Q -10 -20 0 0 10 -20 20 -40“/>
 <animateTransform id=”jog-1-rotateRight” ... />
 <animateTransform id=”jog-1-rotateLeft” ... />
 </g>
 <rect id=”jog-1-dial-left” fill=”white”opacity=”0.0001”
 x=”-50” y=”-50” width=”50” height=”100”/>
 <rect id=”jog-1-dial-right” fill=”white”opacity=”0.0001”
 x=”0” y=”-50” width=”50” height=”100”/>
 </g>
</g>

In this number we have Christopher Lewis and Alastair
Fettes talking to us about the Open Source project known
as SPARK, SVG Programmers Application Resource Kit,
and how to use it.

Tabula Rasa 3

Example 1: SVG document
fragment describing SPARK
Jog Dial

This SVG Document Fragment provides a
circle with an arrow that marks the top of
the dial and can be rotated either clockwise
or counter-clockwise depending on which
animation is started. It was drawn with an
available open source WYSIWYG SVG Editor
and can be seen in Figure 1 (opposite page).

In this case we’ve decided that the Jog
Dial will be a SPARK atom. Therefore
the ECMAScript object extends Atom
(not shown). It implements mousedown
and mouseup handlers to begin and end
the animation of the Jog Dial and to
start and stop a timer which increments
or decrements the value of the Jog Dial.
Example 2 shows the portion of the
mousedown event responsible for starting
the clockwise rotation of the dial.

Example 2: Method that
starts the clockwise rotation
of the Jog Dial

The closure is necessary to ensure that the
increment (incr) method is called on this
instance of the Jog Dial by the timer which is
started on by the mousedown event. This is
so that you can hold down the mousebutton

and have the events continue to fire.
The frequency with which events are fired
is determined by the “eventFreq” member,
which is extracted from the metadata
specified in the SVG Document Fragment.

You’ll notice that, in addition to starting
the animation, the mousedown handler
calls the “incr” method. This method is
responsible for triggering a positive event
from the Jog Dial. This is accomplished
by giving the Jog Dial a positive state via a
call to the setState method, which in turn
notifies any observers that the state of the
widget changed and runs any commands
associated with the widget (Example 4).
The notifyObserver method is part

of the Observable interface which is
implemented by all SPARK widgets. The
Observer design pattern allows other objects
implementing the pattern to be notified of
changes in the state of the Observed object.
The runCommands method is part of the
CommandHolder interface which is
implemented by all SPARK Atoms. The
Command pattern allows functionality to
be added and removed from otherwise
generic components.

Example 3: The increment
and setState methods

When the increment method is called, it
updates the state of the widget, which in
turn runs any associated commands and
notifies any observers that the widget
has been updated.

To demonstrate the use of the Jog Dial,
we produced a simple Etch-a-sketch
application (Figure 2, this page). This
application consists of two Jog Dials that
control a cursor on the screen. As the
cursor is moved, a line is drawn on the
screen. The first Jog Dial controls vertical
movement and the second controls
horizontal movement.

JogDial.prototype.mousedown = function(evt) {
 if(SPARK.requestMouseFocus(this) {
 var thisObj = this;
 if(evt.target.getAttribute(“id”) == this.ID + “-dial-left”){
 this.animate = evt.target.ownerDocument.getElementById →
 (this.ID + “-rotateLeft”);
 this.animate.beginElement();
 JogDial.active = function() {
 thisObj.incr();
 JogDial.timeout = setTimeout(“JogDial.active()”, →
 thisObj. eventFreq);
 };
 JogDial.timeout = setTimeout(“JogDial.active()”, 40);
 }
 evt.stopPropagation();
 }
}

EXAMPLE 2

Shake!

Delta Value: 10|

Set Delta Value:

Figure 2 : Screen Shot of the
Etch-a-sketch Application.
The above screen shot shows the
sample Etch-A-Sketch application.
The JogDial on the left has been
rotated 90 degrees to make it clear
that it controls vertical movement
while the control on the left controls
horizontal movement. The “Shake!”
button resets the application, while
the “Delta Value” and “Set Delta Value”
controls change the amount that the
cursor moves in response to an
event from the JogDials.

>> continued on page 7

4 August 2005

Talks with
Implementors

Our publisher Michael Bolger recently travelled to Xamlon, Inc., a fascinating new company located in
La Jolla, California, to talk with founder and CEO Paul Colton. Paul is the creator of Live Software and JRun,
the latter now owned by Macromedia (Adobe). Xamlon’s eponymous product focuses primarily on Microsoft
and Macromedia technologies, but does include limited SVG support, though SVG looms larger in Xamlon’s
future via the efforts of Xamlon developer Kevin Lindsay and others.

Michael Bolger

MB> I would just think that in Semantic

Web applications, SVG is going to be a

major player.

PC> Yes, I would think also. I want

to make clear, we are about targeting

whatever works, we are not tightly bound

to Flash, Flash is just a good target now,

the problem is that browsers are all

different. If there could be a standard out

there that I know that I can generate, let’s

say SVG, XHTML, fine, all we are after is

unifying the developing experience. The

developer does not want to learn yet

another API, let us do that work for you,

we’re just going to take your code

and spit it out to the very latest and

greatest technologies available in that

platform. Unfortunately every browser

is different, including same browser with

different versions, it’s a nightmare for

developers. You need a compelling

unified experience.

MB> With the pending Adobe-

Macromedia merger, will they support

Mobile SVG?

PC> They might, SVG Tiny, they might,

I am all for it, that would be great, all we

want is consistency, we want to write

once and deploy to all mobile devices,

unless any of those is the exact same,

everywhere, it won’t really work, so the

one player, whoever, it might be SVG

right, whoever can be the most consistent

across all mobile devices is the winner.

MB> With all the XML features in

.net 2.0, how exciting is that getting

to be?

PC> What we’re saying is, still use

.net 2.0 and all the great tools, as

a development language but

disconnected from the deployment

target. What we’re trying to accomplish

here is use as much of .net as you can,

maximize as much of .net you can then

throw it up to the web—flash—including

web services and everything, essentially

one IDE, right now Visual studio, we

are planning on Java, Eclipse.

MB> What about Mono?

PC> We are considering it, we’re not

bound to XAML, we don’t have to be our

code, of course whole pieces are specific

to Microsoft stuff, we purposely made

sure we could target any other type

of markup.

MB> How about SVG in the

work flow?

PC> We have SVG converters in,

we probably want to do some of them

out. Clean SVG is, because of the

complexities, it’s hard to out a clean

beautiful SVG or to suck in someone’s

hand written SVG, mung with it and get

it out with it still beautiful, that’s hard

with any XML.

MB> The X windowing people are

working on SVG for the desktop.

PC> Okay, so that would be a competitor

to XAML. My philosophy is getting all this

stuff to work together as best it can, of

course you’re building tools that are

going to make it a reality, you know we

have, it’s a simple one, Kevin wrote it,

fairly effective Adobe SVG to XAML

converter, we would like anything to

come in, Native SVG, go for it, we get it

into the final product. Our ultimate goal

to unify, best case wouldn’t it be great, I

like Java, I like C#, done, Eclipse or Visual

Studio done, ultimately SVG.

Xamlon is one of new companies that we
will be talking about more in the future. For our
next issue, join Michael as he bites deep into
Apple to find about an emerging and important
partnership between Apple and KDE over
Scalable Vector Graphics.

A manuscript page from Boethius’
“De Artithmetica”, circa 520. His
thoughts were of great influence
throughout the Middle Ages.

Sensorial expressions
and emotion
 by Domenico Strazzullo

Boethius (480-524 ad), Latin scientist,
philosopher and mathematician, was
certainly the first digital artist. According
to this remarkable thinker (De Institutione
Musica), by the divine reason, all things were
established in harmony after the order of
the numbers. This order existed in the
intelligence of the Creator. Thus, the number
is the principle of all things, and the music
according to Boethius is nothing else than
the science of numbers that govern the world.
During the Roman and Gothic epochs the
word “music” designated harmony in its
broader sense, and was even defined as

“science of all proportion, whatever it may be”
(Edgar de Bruyne, Etudes d’esthétique Médiévale
1946). There we have official recognition of
digital arts that backdates 1500 years!

Much later, electronic scientific instruments,
appliances and programming logic made
possible to scientifically corroborate
Boethius’ digital visions and this ultimately
led to the flourishing of computer art,
not only as a medium for “analog” art
reproduction but as an original tool for
artistic expression. Among Computer Arts
disciplines we are particularly interested here
in graphic arts. Like with other forms of art,
one important distinction can be made for
graphic arts: decorative versus fine arts. This
series will attempt to help young artists to get
insight as to the fundamental meaning of
that distinction, to help establish the notion
of the self as “the creator”, to discover and
develop inner vision.

A good place to start is to try to define and
understand what “aesthetics” stands for.
According to the dictionary, aesthetics is:

“1. The branch of philosophy dealing with
such notions as the beautiful, the ugly, the
sublime, the comic, etc., as applicable to
the fine arts, with a view to establishing the
meaning and validity of critical judgment
concerning works of art, and the principles
underlying or justifying such judgments
2. The study of the mind and emotions in
relation to the sense of beauty. ”

Um...perhaps we had never suspected
it was a branch of philosophy. The first
definition fits perfectly what an art critic
does and we may feel uncomfortable with
the notion that aesthetics, as a science, has

“...a view to establishing...the principles...”
and we might show some resistance: “what
principles? I’m making new ones tomorrow!”.
This attitude is legitimate and even
encouraged, at some point and to some
degree. Let’s put the first definition on
the side temporarily.

The second definition attracts our attention
in that we feel affectively concerned. Since
we are artists and, aggravatingly enough,
of the inquisitive type, we need to know more
about the sense of beauty and its dependency
to emotiveness, both of the creator and
of his public. Our five senses serve, or
served, primarily for survival needs. In
the microcosms of the human brain, as an
epitome of the world, like in that of other
superior animals, we cannot say if capability
of intelligence was an implemented feature
or if it was triggered accidentally by playful
activities; but we can safely admit that the
senses being used more and more in
conjunction with communication, leisure
and playful activities, was an expression of
growing intelligence. The caveman coming
back from a hunting trip, having seen some
dangerous animal, would run away, then back
in his cave relaxing, he would sit and draw
what he had seen, for others to know.

That was probably the first example of
a newsletter. He must have found some
pleasure in that drawing activity since we
are still doing it, telling stories. The first
aesthetics rules were gradually in the
making with tacit consentience, that
is, before scholars were around, probably
based on simple observation of natural
shapes with their colors and shadows. The
degree of sophistication of the concepts that
make up aesthetics has become very complex
since, although the emotional exchange,
one of the ends of artistic expression,
has remained in its basic meaning.

It is important to accept that the canons
of beauty are not arbitrary. In respect to
mankind as a whole, they may be so, but
certainly not in respect to individuals.
The collection of aesthetics rules with the
addition of aberrations generated by the
artistic thought results in a delicate balance
which may respond to two contradicting
feelings: the need for security, with its
attachment to nature, to the known, to the
safe, and the need for discovery. This can be
compared to those very singular human
activities, that of the scholars who spend
most of their time codifying and normalizing,
and that of the creators who spend most
of their time breaking the rules. These
two activities are in fact in the scheme of a
feedback trial and error system, the
aberrations being in

“It is important
to accept that the
canons of beauty
are not arbitrary. ”

>> continued on page 7

the

corner

Fo
lio

 3
4

re
c

to
; B

o
e

th
iu

s,
 D

e
 A

rit
h

m
e

tic
a

, L
a

ti
n

 m
a

n
u

sc
rip

t
o

n
 p

a
p

e
r,

It
a

ly
, c

. 1
39

0
Sp

e
c

ia
l C

o
lle

c
ti

o
n

s,
 J

o
h

n
 H

a
y

Li
b

ra
ry

, B
ro

w
n

 U
n

iv
e

rs
it

y

Tabula Rasa 5

SVG (for lack of a
better name)
Protect your image
 by Peter Schonefeld

As the name suggests, the Scalable Vector
Graphics format will allow you to build vector
graphics and, if you wish, scale them. But if
we look at the draft specification for SVG1.2
in the very first sentence we find “SVG is
a language for describing two-dimensional
graphics and graphical applications”.
OK, we get the first bit…but what’s with

“graphical applications”??

The truth is SVG is much more than just a
medium for vector graphics. SVG also has
capabilities that relate to raster images and
other non-vector media. Throw in animation,
pixel based filter mechanisms and its uses for
building graphic user interfaces for computer
programs and we have something that’s much
more than just SVG, perhaps it should be
called Scalable, Scriptable Vector and
Raster Graphics, Sound and Animation (or
SSVRGSAA for short). Now I’m just being silly.

It’s clear that we can look at SVG as
something much more than just a vector
graphics format, but don’t take my word for
it. In this and hopefully following articles,
I’d like to show some of the uses for SVG that
will add a great deal of value to graphics on
the web. First cab off the rank is the following
blurb that shows how we can embed
copyright information into a web graphic
using the Creative Commons License.

The two left images (below) both appear
to be raster, not vector, images. Correct.
However, while the first image is a jpeg, the
second is an SVG document with a jpeg
image embedded within it.

As an amateur artist, I don’t really stand to
lose much if my image is copied and used
against my intentions (of course you do know
my intentions for use of this image…just by
looking at it, don’t you?). However, through
Internet piracy, some professionals do
stand to incur loss to their pocket and/or
reputation if work is used in a way that they
don’t intend. At the end of the day, amateur
or pro, it doesn’t matter who you are: it’s
your right to protect your work.

Unfortunately, today on the web if you’re an
image pirate you might use the defence, “Well
I thought that because it was on the web, it
was free. Nothing told me otherwise.”

I may not be in a position to analyze the
law around breach of copyright, but I can
show you how to better protect your

images by using the tools provided at
www.creativecommons.org.

From their web site: “Creative Commons has
developed a Web application that helps
people dedicate their creative works to the
public domain—or retain their copyright
while licensing them as free for certain uses,
on certain conditions”.

Now that’s what we want! Typically you add a
cc license to your web site, but that to me is
still classed as fine print…let’s be clear about
what we want (or don’t want) done with
our images.

Notice the creative commons watermark on
the image. That “watermark” is not actually a
watermark in the traditional sense of the term.
It sits above the image, like a layer. We can
interact with the cc “watermark” so let’s click
on it....

As you can see in the third image, it is now
clear what people can do with the image and
even who made it. Further, when your image
is used at a web site other than your own, if
it’s embedded in an SVG document, your
license information (or whatever info you
like) can travel too! For something like this to
work, it needs to be simple to do and it helps
if many people use it, so that the function of
cc becomes common knowledge. The good
news is that it is easy to do. A template page
with the SVG and code that’s generated from
creativecommons.org can be found with the
source code for this article. If you were to
examine the SVG code for this document,

“It’s clear that
we can look at SVG
as something much

more than just
a vector graphics

format…”

The first image on the left is a JPEG image. The second shows
an SVG document with a JPEG image embedded within it. The
third image on the right shows the same SVG document after
clicking on the “CC” watermark.

6 August 2005

you can see SVG is an XML based format
just like XHTML. As for people using it: Did
you know that this works in Firefox without
installing any other program? It’ll also work
in IE with the Adobe SVG viewer.

Perhaps as individuals we can do something
to make protecting our rights even easier.
Contact the vendor of your favorite graphics
package and ask them to include “Save as
SVG (with CreativeCommons)” as an option
in their programs.

Sensorial expressions >> continued from page 5

Creating SVG widgets >> continued from page 3

Cursor movement is started by a Command
attached to the Jog Dial. This Command
is attached to the Jog Dial via the
SPARKDecorator when the widget is created
in the SPARKFactory. The details of the
Decorator and Command can be seen in
the Etch-A-Sketch source which is available
on the SPARK project page.

This article presented the main steps
required to create a SPARK-FW compliant

purposes of taking the spectator for a trip out
of his daily occupations and preoccupations,
feeding his soul with exciting discovery or,
 at least, entertainment.

In the next article we will explore more deeply
the impact of physiological perceptions on
the emotional construct.

By the way, Boethius had to sustain torture
and execution.

So, I hope from this short blurb you can
see that SVG is useful, for more than vector
images alone, even if it’s called that for
lack of a better name.

The source code for this article can be found at:
http://www.svgf.org/code/peter

Jog Dial and those required to use the widgets
in an application. This widget can be used
together with the existing SPARK widgets
and should be usable with any forthcoming
SPARK widgets. Using the widget in the
sample application is as simple as attaching
a command to the widget at the time that it
is created.

turn codified and normalized, eventually.
Originality is incompatible with the first
activity and essential to the second.

“It don’t mean a thing if it
ain’t got that swing”

As artists we are particularly concerned
with establishing the meaning of the second
definition of aesthetics: “The study of the
mind and emotions” in the sense of the
metaphysical what and why we seek. This
will help us understand the meaning of
poetry. In a broad sense we can call poetry
the emotiveness engendered by any form of
communication, that thing without which any
expression is sterile or even boring (but not
necessarily meaningless), failing to awaken an
emotive reaction in the spectator. Meaning
that if the creation lacks or fails to convey
emotion, it doesn’t fulfill one of its basic

Tabula Rasa 7

The Tabula Rasa >> continued from page 1

8 August 2005

Executive Publisher
Michael Bolger

Editor-in-Chief
Kurt Cagle

Managing Editor
Domenico Strazzullo

Art Director
Jayne De Sesa

Production Manager
Sara J. Porter

Associate Editors
Peter Schonefeld
Ruud Steltenpool
Ronan Oger

Tabula Rasa is published by The SVG Foundation,
949-257-0011, 23016 Lake Forest Drive, A472,
Laguna Hil ls , CA 92653
ht tp://tabularasa.svgf.org
© 2005 The SVG Foundation

SVG is an Open Standard, in the same way
that HTML and XML are. An open standard
is much like a contract, in that it specifies
what you can and can’t do with it. You can
create graphics without having to pay a
license fee for that permission; create tools
that will help others create those graphics
without having to pay a license or fearing that
someone can revoke your right to work with
the standard. You can see (and to a great
extent participate in the development of)
the standards as they are being created, and
can know that changes that occur in those
standards are stable once the development
process is complete. What you can’t do is
prevent other people from also utilizing the
standards, nor impose a penalty upon them
if they happen to be a competitor of yours.
An open standard is ultimately a level
playing field.

Not surprisingly, certain companies that
are perfectly happy with playing fields
that have hills and valleys (especially where
they command the hills) have not been
thrilled to see SVG. At first they chose to
ignore it, then as more and more small
companies and developers began to see the
benefit of the language and built tools around
it, they began to deprecate it. Meanwhile the
tools moved from specialized viewers to
editors, and most recently SVG has begun

to scale the ramparts of the browser, the
platform it was originally intended for. In
the withering barrage of criticism and scorn
heaped upon it by its detractors, the role and
purpose of the language has become more
clearly refined. Curiously enough, every time
those same detractors shake their heads and
say that SVG is not suited for this or that
purpose, lo and behold some enterprising
soul proves them wrong.

The last five years, however, have simply
set the stage. We have only just reached a
point where scalable vector graphics are
now available to the average non-programmer,
yet most people are not aware of the power
which is at their grasp. This is the role of
both the SVG Foundation and this magazine.
Over the ensuing weeks and months and
years we hope to inform and highlight
and educate (and maybe, just maybe, to
entertain). We hope to promote SVG and
related technologies, to recognize those
people who follow a similar mission, and to
act as a bridge between the SVG community,
the standard setters and the tool makers.

If you have a story to tell, a work of art
to show, a tool to promote, or even just a
thought to express, please contact us at
editors@svgf.org. The canvas is primed—
let’s go paint a masterpiece.

SVG Open 2005
PO Box 6

7500AA Enschede
The Netherlands

w
w
w
.s
v
g
o
p
e
n
.o
rg

4th Annual Conference on
Scalable Vector Graphics

SVG Open 2005
conference

University of Twente
Enschede

(the Netherlands)
August 15-18

SVG Open 2005 is
organised by:

Sponsors

Enschede, The Netherlands
August 15 - 18

The year 2005 will likely be seen in retrospect as the year that SVG hit the big time. If
you are a graphic artist, a developer, a content manager, a cartographer or anyone who
needs to deal with graphics as being more than just pretty pictures, you will have one of
the best opportunities to learn more: on August 15-18, the SVG Open 2005, the 4th Edition of
the International Conference (and exhibition) on Scalable Vector Graphics will be held in
Enschede, the Netherlands, a conference where the cutting edge artists and developers
get a chance to immerse themselves in the frontiers of 2D computer graphics.

In the last year a great deal has happened in the world of SVG. All of the big mobile
phone companies now offer many phones with SVG (-Tiny) pre-installed, indeed some have
models left that don’t support it. This year as well is seeing SVG move into the browser market,
with five of the six major browsers in use today promising SVG support by year’s end.

SVG Open 2005 promises to offer a smorgasbord of new technologies and implementations
for artist, programmer, and manager alike. The program includes courses and workshops on
topics ranging from SVG animation to who’s doing what with SVG to using Scalable Vector
Graphics within browsers and cell phones. Keynote speakers will include Simon Kendall,
CTO of multi-national car insurance company EurotaxGlass that uses an SVG system for all
its damage reports, XML guru Kurt Cagle, talking on the future of web graphics, W3C SVG
WorkGroup leader Chris Lilley, and many others. You’ll also get a chance to talk to vendors
and developers of SVG services on the convention floor.

Please take a look at http://www.svgopen.org/2005 for more information, including the full
schedule, registration form, and sponsors. SVG Open 2005 is organized by the University of
Twente, Telematica Instituut and ITC, The International Institute for Geo-Information Science
and Earth Observation, and is affiliated with the W3C. We look forward to seeing you there.

 —Ruud Steltenpool, Chairman, SVG Open 2005

 SIGGRAPH VISITORS

